A NOVEL ACTIVE ESTER SYNTHESIS REAGENT (N,N'-DISUCCINIMIDYL CARBONATE) Haruo Ogura,[#] Takanori Kobayashi, Keiko Shimizu, Kazumasa Kawabe, and Kazuyoshi Takeda School of Pharmaceutical Sciences, Kitasato University

Shirokane, Minato-ku, Tokyo 108, Japan

A convenient reagent for active ester synthesis --N,N'-disucinimidyl carbonate-- was prepared. This reagent was useful for the preparation of active esters and peptides in stead of dicyclohexylcarbodiimide.

Recently, we reported halosulfonium chloride as a carboxamide synthesis reagent.¹ Active esters of N-hydroxysuccinimide have been prepared by the dicyclohexylcarbodiimide (DCC) method or the mixed anhydride method.² However, mechanistic studies of the reaction of carboxylic acids with amines mediated by DCC show some trouble in the peptide synthesis.^{3,4} In this paper, we described a more convenient method of active ester synthesis than DCC method, that is preparation of peptide using N,N'-disuccinimidyl carbonate (DSC).

DSC (3) was prepared by two methods (Scheme 1); (i) reaction of Nhydroxysuccinimide (1; HOSu) and trichloromethyl chloroformate (TCF) under reflux in xylene (yield: 62%) or without xylene (yield: 50%) and (ii) reaction of trimethylsillated HOSu (2) and phosgene in tetrahydrofuran at 0° (yield: 80%). DSC (3) was colorless prisms having mp 211-5° (decomp.) and could be kept for years upon storage in a refrigerator.

Scheme 1

In a typical experiment, a mixture of a molar equivalent of Z₋ or Bocamino acid (4), DSC (3), and pyridine in acetonitrile was stirred at room temperature (Scheme 2). There were obtained active esters (5) in good yields as shown in Table I.

Table]	I.	N-Hydrox	ysuccinimide	Esters	of	N-Substituted	Amino	Acids	and	Peptides
---------	----	----------	--------------	--------	----	---------------	-------	-------	-----	----------

Starting Product		Yield (%)	[α] _D (1	[α] _D (Dioxan: °C)			
material		(Reported)	Observed	Reported			
Z_Ala	Z_Ala_0Su	97 (65) a	-37.3 (c 2.1; 25)	-37.2 (c 2; 25) a			
Z-Val	Z-Val-OSu	100 (53) a	-26.8 (c 2.1; 22)	-25.1 (c 2; 25) a			
Z-Leu	Z-Leu-OSu	98 (51) a	-32.8 (c 2.1; 23)	-33.6 (c 2; 25) a			
Z-Phe	Z-Phe-OSu	100 (76) <u>a</u>	-55.6 (c 1; 25) <u>b</u>	-54.2 (c 1; 25) <u>^b, c</u>			
Boc_Ala	Boc_Ala_OSu	81 (71) a	-51.0 (c 2; 23)	-49 (c 2; 25) a			
Boc-Val	Boc-Val-OSu	89 (74) a	-37.1 (c 2; 24)	-37 (c 2; 25) a			
Boc-Leu	Boc-Leu-OSu	83 (48) a	-40.8 (c 2.1; 21)	-41.8 (c 2; 25) a			
Boc-Phe	Boc-Phe-OSu	100 (81) <u>a</u>	-19.1 (c 2.1; 21)	-19.0 (c 2; 25) $\frac{a}{}$			
Z-Ala-Ala	Z_Ala_Ala_OSu	99 (-)	-62.5 (c 4.1; 23)	-46.4 (c 3.8; 24) ^{<u>d</u>}			
Z_Ala_Phe	Z_Ala_Phe_OSu	100 (_)	-25.5 (c 3.4; 23)	-24.6 (c 3.8; 24) <u>d</u>			

<u>a</u>: G. W. Anderson, J. E. Zimmerman, and F. M. Callahan, <u>J. Am. Chem. Soc</u>., <u>§6</u>, 1839 (1964).

b: DMF.

- <u>c</u>: T. Mukaiyama, K. Goto, R. Matsuda, and M. Ueki, <u>Tetrahedron Lett</u>., 1901 (1970).
- <u>d</u>: H. R. Bosshard, I. Schechter, and A. Beger, <u>Helv. Chim. Acta</u>, <u>56</u>, 717 (1973).

In paticular, the reaction proceeded at room temperature, the end of reaction could be clarified with generation of gas (CO_2) , and optically pure active esters (5) were obtained in high yield without detectable racemization. DSC (3) was not a disagreeable skin irritant such as DCC, and 3 was decomposed easily to water soluble N-hydroxysuccinimide (1) and CO₂ after the reaction. In conclusion, DSC method is more convenient than DCC method for active ester and peptide syntheses.

REFERENCES

- K. Takeda, T. Kobayashi, and H. Ogura, <u>Chem. Pharm. Bull</u>. Tokyo, <u>27</u>, 536 (1979).
- 2) M. Bodanszky, Y. S. Klausner, and M. A. Ondetti, "Peptide Synthesis", 2nd Ed., John Wiley & Sons, New York, 1976.
- 3) H. Gross and L. Bilk, <u>Tetrahedron</u>, <u>24</u>, 6935 (1968).
- 4) J. Rebek and D. Feitler, <u>J. Am. Chem. Soc</u>., <u>95</u>, 4052 (1973); <u>96</u>, 1606 (1974).

(Received in Japan 20 August 1979)